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1. INTRODUCTION AND BACKGROUND

Much attention has centered recently on Birkhoff interpolation, which can
be described as follows. Let E = (eij)~~~ j~o be a matrix of zeros and ones,
with exactly n 1 ones. (For the sake of convenience, our notation will
differ slightly from the usual.) Let Xu < Xl < ... Xk+l be interpolation nodes.
Without loss of generality, it is possible to specify two of the nodes, and we set
Xo = -I, x 1'+1 = 1. Denote by Pn the set of algebraic polynomials of degree
~ n. Let X =, (Xl' X 2 '00" Xl,.), and suppose that the system of equations

for eij = 1, "
p(x) = L bvx',

1/ -",,0

(I )

has a unique solution for all Cij . Then E is said to be X-poised. Since we seek
a unique solution, it is clear that we need only consider the homogeneous
case, Cu = O. Since p(x) == 0 is always a solution in this case, E will be X­
poised if p(x) == 0 is the only polynomial in P n which annihilates E (i.e.,
satisfies the zero data). If E is X-poised for all X, then E is said to be poised,
whereas if for some X, E is X-poised and for others it is not, then E is said
to be conditionally poised. (In the literature, the term nonpoised has generally
been used for matrices which are not poised, without making a distinction
between those that are conditionally poised and those that are not X-poised
for any X. The latter type, however, is easily distinguished: they fail to
satisfy the P6lya conditions (see below), [4, 20]). Examples of poised matrices
include Lagrange matrices, where eij = 0 for j ~ 1, i = 0, 1, ... , k c- L
and Hermite matrices, where each row begins with a single sequence of ones
followed by a single sequence of zeros. In the latter case, each row is said to
contain Hermite data.
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The intriguing problem of Birkhoff interpolation is to find a characteriza­
tion of poised matrices. As of now, no such characterization has been found,
and the possibility of obtaining one seems remote. As a result, attention has
turned to finding classes of poised and nonpoised matrices [1, 2, 6-9, 12, 13,
18, 22]. We mention just two examples of these types of studies, which will
be needed in this paper.

k+l . r
Let m; = Li~O ei;, } =~ 0, I,..., n, and M r =, Li~O mj, r = 0, 1, ... , n. E

satisfies the Polya conditions if M r '); r + 1, r = 0, 1,... , n. The Polya condi­
tions are known to be a necessary, but not sufficient condition for the poised­
ness of E [20].

A maximal sequence of ones in row i of E, beginning in column j, is said to
be supported if there exist i1 < i, i2 > i, jl < j, j2 < j, such that ei1;1 =

ei
2
i

2
= 1. Such a sequence is odd(even) ifif consists ofan odd (even) number of

ones. The following results illustrate the importance of this concept.

TH'EOREM A. [1]. If E satisfies the Polya conditions and has no odd
supported sequences, then E is poised.

THEOREM B [6, 7]. IfM r '); r -I- 2, r = 0, 1, ... , n - 1 and ifsome row ofE
has exactly one odd supported sequence, then E is conditionally poised.

Many other examples of nonpoised matrices are given in [2, 8, 9,13,18,22].
Although new classes continue to be found, the basic problem remains
unsolved. It may be useful, therefore, to investigate other aspects of the
subject. For example, very little has been done on conditionally poised
matrices. There is some work on lacunary interpolation (known as 0-2,
0-1-3, etc.) [19, 25] and on symmetric interpolation [24, 28]. In these cases,
however, only certain configurations of nodes and derivatives are considered.
The purpose of this paper is to study conditionally poised matrices in greater
generality.

2. FURTH'ER RESULTS AND EXAMPLES

One important result on conditionally poised matrices is due to D.
Ferguson. In this setting, complex interpolation nodes are allowed.

TH'EOREM C [4]. If E is conditionally poised, then the set of vectors, X,
for which E is not X-poised is a closed, nowhere dense set in complex k-space.

Because ofits generality, one shouldn't expect this theorem to yield informa­
tion about the set of vectors for which a particular matrix is not X-poised.
But it does give a clue to what one may expect; that is, it would not be sur-
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prising to find what one may call "intervals of poisedness." We illustrate
with some simple examples.

EXAMPLE 1. Let

11

1 0 01'
£1 = 0 1 0 I

. 1 0 0,

It is easily seen that £1 is X-poised if and only if Xl =1= 0, i.e., if and only if
xlE(-I,O)u(O, 1).

EXAMPLE 2. Let

:11 0 0 0
I 0 1 0 0

£2 = 11 0 1 0 0
,} 0 0 0

A calculation of the determinant of the linear system shows that £2 is X­
poised unless X l X2 = -1/3. Hence, if Xl , X 2 E (-11 vj, 11 vj) or Xl' X 2 rf
[-I/V3, I/v3], then £ is X-poised. Moreover, if X 2 < 1/3 or Xl > -1/3,
then again E2 is X-poised. Our results in Section 3 will help us understand
these examples.

3. TI-fE MAIN RESULT

We consider the following class of matrices. Let rows 0 and k + 1 be
arbitrary, except for a one in column O. Let row i, i = 1, 2,... , k, begin with
a zero, followed by a sequence of ones, and then by a sequence of zeros. A
typical matrix would thus be

r 0 0 1 0
:0 1 1 0 0

0 1 1 1 0 0
0 1 0 0 0
1 1 0 0 I

Suppose also that £ satisfies the Polya conditions, and let Ii be the number of
ones in row i, i = 0, 1,... , k + 1. It follows from Theorems A and Band
[1, p. 231] that £ is poised if Ii is even, i = 1, 2, ... , k, and £ is conditionally
poised if some Ii, 1 :(;; i :(;; k, is odd. Suppose the latter is the case and that
X is a fixed set of nodes. Let pEPn annihilate E and let q = p'. Then q E P n-l

and f~l q = p(1) - p(-1) = O.
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(2)

be any quadrature formula, exact for Pn - I , with aj > 0, j = 1,2,... , N. Let
Y = {YI, Y2 ,... , YN}' I j = (Yj, Yj+I),j = 1,2,... , N - 1, and let Vj = ,£Ii ,

j = 1, 2, ... , N - 1, where the sum extends over those indices i for which
Xi E I j •

DEFINITION. (E, X) is evenly distributed with respect to Y if

Vj is even,} = 1,2,... , N - I, and

if X r E X n Y, then Ir is even.

(3)

(4)

THEOREM 1. Suppose there exists a quadrature formula (2) exact for P n- I ,

with a, > 0, j = 1,2,... , N, such that (E, X) is evenly distributed with respect
to Y. Then E is X-poised.

Proof. We show first that if q = p' is not identically 0, then q can't
have any zeros in (-1, 1), other than the ones specified by E. This is clear if
rows °and k + 1 consist of Hermite data only, since then q will have n - 1
zeros specified by E (counting multiplicities). In the more general case, we
invoke the Budan-Fourier Theorem [14], used in the following form: If q is a
polynomial of exact degree n - 1, then

Here Z[q; (-1,1)] is the number of zeros of q in (-1, I), counting multi­
plicities, and S+(bi)~OI is the maximal number of sign changes in the sequence
bo , bl , ... , bn - I which can be obtained by replacing zero terms by terms of
arbitrary sign. Each one in row °and k + 1 corresponds to a zero of some
derivative of q. It may easily be seen that every zero term in the sequence
bo , bl , ... , bn - I contributes at least one variation in sign to S+(b,)f::; . Now q
annihilates E', which is the matrix E with the first column deleted. Since
there are a total of n - 1 conditions specified by E', each one contributing
at least one to the left-hand side of (5), q can have no other zeros in (-1, 1).
In particular, q can change sign only at the points of X.

We next show that Y - X =1= 0. Note first that we must have 2N - 1 ;:::0,

n - 1, since 2N - 1 is the maximal degree of precision possible in a quadra­
ture formula based on N nodes [23, p. 136]. Now suppose YC X. Then,
since (E, X) is evenly distributed with respect to Y, q must have a zero of even
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degree at Yi ,j = 1, 2, ... , N. But this yields a total of at least 2N 11 zeros for
q, which implies that q 0, so that £ is X-poised.

Hence, we can suppose that there exists J'i $ X, so that q(yJI O. Assume,
without loss of generality, that q(Yi) O. Since (E, X) is evenly distributed
with respect to Y, q changes sign an even number of times in Ii ,j I, 2, ... ,
N - 1, while if.vi E X (\ Y, then q does not change sign at Yi . Thus q(y',) 0
for all s, and q(Yi) O. We obtain 0 = f-1 q = 2:::::1 ai q(Yi) > a, q(yJ O.
It follows that q =-c 0, so that £ is X-poised. I

COROLLARY 1. If all x,'s lie outside [J'1 , YN]' then £ is X-poised.

We can also obtain a special case of Theorem A.

COROLLARY 2. If Ii is even, i = 1, 2, ... , k, (so that there are no odd
sequences), then E is poised.

To illustrate our results, we return to our examples of Section 2.

EXAMPLE I. For E1 , we have q E Pl' We use Gaussian quadrature [5,
p. 390], f~l q = 2q(0), exact for PI . Clearly, if Xl eft 0, then E1 is X-poised.

EXAMPLE 2. For E2 , we have q E P2 • Using Gaussian quadrature, we
obtain f~l q == q(-II y'j) +qOI yj), exact for P3• Here Y = {-II yj, II y'j},
so that if Xl' X 2 E (-I/y'j, l/y'j) or Xu X 2 $ [-I/y'j, l/y'j], then (E2 , X) is
evenly distributed with respect to Y. Hence, E2 is X-poised. We can, however,
go a step further. The strength of Theorem I is that it can be used with any
quadrature formula with positive coefficients. Thus, if we apply Radau
quadrature [5, p. 406], f~l q =, l/2q(-I) + 3/2q(l/3), exact for P2 , we
obtain Y = {-I, I/3}, so that X 2 < 1/3 implies £2 is X-poised. Similarly,
since fl q = 3/2q(-1/3) + 1/2q(l), we see that E2 is X-poised if Xl > -1/3.
These results are in agreement with our earlier observations.

4. REMARKS AND EXTENTIONS

I. A class of quadrature formulae with positive coefficients, based on N
nodes and exact for P2N- 3 , has been obtained in [17]. Many other such
formulae are known [3], such as Newton-Coates for N < 8 [23, p. 113] and
Lobatto quadrature [5, p. 409]. Other results connecting Birkhoff inter­
polation and quadrature formulae (in different contexts) include [11, 16, 21].

2. It is tempting to think that the converse of Theorem 1 is true; i.e., if E is
X-poised then there exists some quadrature formula with positive coefficients,
2:::1 aJ!(Yj), exact for P n - 1, such that (E, X) is evenly distributed with
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respect to Y. This can be demonstrated for the matrix £2 by a calculation, and
the conjecture seems plausible in general.

3. The ideas of Theorem 1 can also be used to show that certain matrices
are not X-poised, when the interpolation takes place at the nodes of an
appropriate quadrature formula. Specifically, we have the following:

THEOREM 2. Let Y = {Yl , Y2 ,... , YN} be the nodes of a quadrature
formula (not necessarily with positive coefficients) which is exact for Pn-l .

Let X c= {-I, I} U Y and suppose that £ is an (N + 2) X (n + 1) matrix
in the class ofSection 3 which has Hermite data in rows 0 and N -f- 1. Then E
is not X-poised.

Proof As in the proof of Theorem 1, we have n :S:; 2N, so that at least
one interior row of E has just one I. By Theorem B, E is conditionally
poised. Now let q(x) = (x + l)lo-l(x - l)lN~l-l n;:l (x - Yi)l" and let
p(x) =c J~l q(t) dt. Then p E Pn ,p(-1) = 0, and J~l q = L~l aj q(Yj) = 0,
so that p( I) -..= O. Thus, p is a non-trivial polynomial in Pn which annihilates E,
so that E is not X-poised. I

As a special case of Theorem 2, let Y be the set of zeros of the Legendre
polynomial of degree N and let n = 2N. Let X = {-1, I} U Y and let E
satisfy the conditions of Theorem 2. Then E is not X-poised. For example,

I 1 0
0 1 0
0 I 1 0E ..~--
0 1 0
0 I I
1 0 0

is not X-poised for X = {-I, I} U {Yl' Y2' Y3, Y4}, where the y's are the
zeros of the Legendre polynomial of degree 4.

4. We noted that £2 is X-poised unless XlX2 = -1/3. In general, to obtain
the algebraic equation for which a matrix is nonpoised requires evaluating a
determinant. If, however, rows 0 and k + I contain Hermite data, then this
equation may be obtained simply, since

Ie n-l

q(x) == (x + IYo-l (x - 1)1
k+1- l n (x - XjY; = L (_I)i aixn l-i

j~l i~O

where {ai} are the elementary symmetric functions based on -I, Xl , X 2 , ... ,

X/c, 1, counting multiplicities. Since £ is not X-poised if and only if J~l q = 0,
we obtain the following result.
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THEOREM 3. Suppose £ contains Hermite data in rows °and k
£ is not X-poised if and only if

I. Then

0,

II

II even,

11 odd.

5. We saw in the case of £2 that additional information can be obtained
about the poisedness of a matrix by considering various quadrature formulae.
Similarly, quadrature formulae with multiple nodes can also be useful,
although the arguments become more delicate and a general theory remains
to be developed. We illustrate with an example. Let

Ii 1 ° ° 0

1

0 I 1 I 0
£= I~ I 1 I

° ° 0

Here q E P6 , so that we can use Gaussian quadrature based on the four nodes
-.86, -.34, .34, .86 (rounded to 2 places). In particular, if Xl' X 2 f [-.87, .87],
then £ is X-poised. We now consider the quadrature formula

( q = AOq(YI) + A1q'(YI) + A2q"(YI) + BOq(Y2) + Bl q'(Y2) -. B2q"CY2),
• -1

(6)

which is exact for P7 [24, 26, 27]. The nodes and coefficients have been
calculated [24] and been determined to be Yl = -.63, Y2 = .63, 8 0 = A o ,

B1 = -AI' B2 = A2 , where A,: > 0, i== 0, I, 2. Now suppose Xl <: YI,
X2 > Y2 , and let q(x) = c(x - X1)3(X - X2)3, where c < 0. It is easily seen
that q(YI) > 0, q(Y2) > 0, q'(YI) > 0, q'(Y2) < 0. Moreover, a calculation
shows that q"(YI) > °and q"(Y2) > 0. Hence, each term in the quadrature
formula is positive, so that J-~ q > 0, and £ is X-poised. A similar, but more
subtle calculation yields the same result if Xl < YI , X2 < YI ' or Xl >- Y2 ,
X2 > Y2 (here the magnitudes of the coefficients become important, not just
the signs). We thus see that £ is X-poised if Xl' X 2 ~ [-.63, .63], which is a
substantial improvement over the result obtained using simple Gaussian
quadrature.

A similar calculation yields analogous results for the matrix

1 ° ° ° ° °° I 1 I 1 1
011 1 1 1

.1 000 ° °
o
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It thus seems that quadrature formulae with multiple nodes can be of use in
determining X-poisedness. In order to apply this method to more general
cases, however, a good deal of analysis of such formulae is still needed. In
particular, knowledge of the signs and magnitudes of the coefficients will
likely be important factors. In connection with this, see [15, p. 429].
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